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a b s t r a c t

A scheme for projecting an arbitrary quantum state on eigenstates of average Hamiltonian is described.
As an experimental example, projection on entangled Bell states, which are eigenstates of specially con-
structed average Hamiltonian, is demonstrated for a system of two dipolar-coupled nuclear spins. The
results of a direct and time-reversed evolution are added to average out the coherences between different
eigenstates and accomplish the projection.

� 2009 Elsevier Inc. All rights reserved.
Nuclear magnetic resonance (NMR) has been an outstanding
testbed for implementing controlled dynamics [1–4] in systems
of up to twelve coupled nuclear spins [5–7]. A flexibility of
NMR in handling spin dynamics comes from possible fast mod-
ulation of internal interactions by external radio-frequency
fields. Such modulation allows ‘‘switching” interactions on and
off or, more generally, creating average [8] or effective [9] Ham-
iltonians, which naturally do not exist [10,11]. Average Hamilto-
nians with specially designed spectral properties are commonly
used in NMR spectroscopy. One can also think about construct-
ing average Hamiltonians with desired eigenstates, including
the states which are not eigenstates of any naturally existing
Hamiltonians. As we will show, projection on the eigenstates
of such Hamiltonian can be an efficient method of extracting
information about quantum states.

In quantum mechanics, any observable physical quantity can be
represented by a Hermitian operator [12]. However, there is no
general approach for designing a measurement that projects a state
onto eigenstates of an arbitrary Hermitian operator. When it is
necessary to perform a projection on the states that are not eigen-
states of some observable, the results of such projection are recon-
structed indirectly by applying a set of unitary transformations to a
projected state [13–15]. This procedure constitutes a basis for the
state reconstruction. More direct way to project a given quantum
state onto arbitrary states would be creating an average Hamilto-
nian with desired eigenstates and averaging out the coherences be-
tween different eigenstates of this average Hamiltonian. The
experimental illustration below is based on creating an average
ll rights reserved.
Hamiltonian with non-degenerate eigenvalues and Bell
eigenstates.

Four entangled Bell states of a two-qubit system, or a system of
two spins ½, are |U±i = 2�1/2 (|""i ± |;;i) and |W±i = 2�1/2

(|";i ± |;"i), where |"i (|;i) indicate the state with a spin up (down).
They have played an important role in exploring differences be-
tween quantum and classical physics, formulating the Bell inequal-
ities [16], or the EPR paradox [17], discussions on non-locality and
hidden variables [18,19]. Discrimination between the Bell states is
an important measurement in quantum communication. As an
example, the protocols of dense coding [20], quantum teleporta-
tion [21], and entanglement swapping [22] require a projective
measurement in the Bell basis. Until now, such measurement re-
mained a gedanken experiment, and there have been no physical
realizations of the direct projective measurement in the Bell basis.
Experimental discrimination between the Bell states has been
achieved by joint measurements with probabilistic success [23]
or by disentangling the Bell states into separable states [24–28].

In this paper, we describe a direct projection onto the Bell states
for a system of two dipolar-coupled nuclear spins. Due to the
ensemble nature of NMR experiments, we can describe the projec-
tion in terms of a density matrix. Measurement in NMR is a weak
ensemble measurement. However, the experiment can be designed
to extract the results of projective quantum measurement: possible
outcomes and corresponding probabilities [29].

The average Hamiltonian with Bell eigenfunctions HBell can be
constructed as follows. Suppose that the eigenvalues correspond-
ing to the eigenvectors 2�1/2 (|""i + |;;i), 2�1/2 (|""i�|;;i), 2�1/2

(|";i + |;"i), and 2�1/2 (|";i�|;"i) are, respectively, a, b, c, and d.
In the multiplicative basis, the Bell Hamiltonian HBell can be ob-
tained by a unitary transformation
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or, by using the Pauli spin operators,

HBell ¼ 4�1½ðaþ bþ c þ dÞ1þ ðaþ b� c � dÞr1zr2z þ ða� b

þ c � dÞr1xr2x þ ð�aþ bþ c � dÞr1yr2y�; ð2Þ

where 1 is the identity operator. The terms of this Hamiltonian can
be built from the dipole–dipole and the double-quantum Hamilto-
nians. At a = �b and d = 0

HBell ¼ 2�1c1� 4�1cðr1zr2z � r1xr2x � r1yr2yÞ
þ 2�1aðr1xr2x � r1yr2yÞ
¼ 2�1c1� 2�1cHzz þ ða=3ÞðHxx � HyyÞ; ð3Þ

where Hzz = r1z r2z � 2�1 (r1x r2x + r1y r2y) is the secular Hamilto-
nian of dipole–dipole interaction between spins 1 and 2, Hxx = r1x

r2x � 2�1 (r1y r2y + r1z r2z), Hyy = r1y r2y � 2�1 (r1z r2z + r1x

r2x), and Hxx � Hyy is a pure double-quantum Hamiltonian. The
Hamiltonian proportional to Hxx � Hyy can be obtained from Hzz

by applying the multi-pulse sequence with eight-pulse cycle [30].
The Bell Hamiltonian HBell in Eq. (3) has an additional Hzz term
and, therefore, can be obtained by changing relative intervals be-
tween pulses in the eight-pulse sequence. Parameters of the pulse
sequence can be optimized by a computer simulation which takes
into account difference of chemical shifts for the spins and finite
duration of the pulses.

Below we present the results for the case when the initial state is
in the subspace spanned by only two of the Bell states |U±i = 2�1/2

(|""i ± |;;i). This case is especially simple for experimental realiza-
tion but well illustrates the principle. The physical system contained
2% of 1-dodecene-1,2-13C2 dissolved in liquid crystal 40-pentyl-4-
cyanobiphenyl (5CB). Under proton decoupling, 13C nuclei of the
same molecule form isolated spin pairs with residual dipolar cou-
pling between the spins of the same pair. The experiment has been
performed with a Varian Unity/Inova 500 MHz NMR spectrometer
at 23 �C. At this temperature, the chemical shift difference between
two 13C spins is 3 kHz. The splitting due to the coupling is 353 Hz,
and 13C NMR lines from the 1-dodecene-1,2-13C2 molecules and
5CB do not overlap.

The pulse sequence is shown in Fig. 1(a). The first step, not
shown in the figure, is the 13C polarization enhancement by
cross-polarization from protons, performed by two simultaneous
frequency-sweeping pulses [31]. The resulting spectrum is shown
in Fig. 1(b). During the step A, the pseudopure ground state |""i
is created by using a partial saturation. A two-frequency irradiation
of 5 ms duration at the resonance frequencies of transitions be-
tween states |";i and |;;i and between states |;"i and |;;i (indi-
cated by two arrows in Fig. 1(b)) equalizes the populations of
three states other than the ground state |""i. Unwanted coherences
between states are removed by a z-filter, implemented by turning
off the 1H decoupling [32] for 1 ms after the two-frequency pulse.
This elimination of coherences is very efficient, as evidenced by the
linear-response spectrum in Fig. 1(c) and the reconstructed density
matrix of the pseudopure ground state in Fig. 2(a). For the state
reconstruction we used the protocol described in Ref. [33]. When
needed, the Bell states |U±i can be obtained from the ground state
by using a sequence of rf pulses and delays, as it is shown in step B
of Fig. 1(a). The sequence is (p/2)h � (s/2) � (p)h � (s/2) � (p/2)s,
where (p/2)h and (p)h are, respectively, non-selective 90� and
180� pulses, (p/2)s is a selective pulse on either of two 13C spins,
and s = 1/(2 � 353 Hz) is the delay producing the phase gate:
|""i? |""i, |";i? |";i, |;"i? |;"i, and |;;i? �|;;i. The recon-
structed density matrix for one of the Bell states |U+i = 2�1/2

(|""i + |;;i) is shown in Fig. 3(a).
The state projection is performed in step C of Fig. 1(a). For the

subspace of states |U±i one can use the original eight-pulse se-
quence [30] without any modification. This sequence creates the
double-quantum average Hamiltonian with Bell eigenstates. How-
ever, two of them |W±i = 2�1/2 (|";i ± |;"i) are degenerate and can-
not be distinguished. The states |U±i have different eigenvalues k1

and k2. Due to finite pulse durations, one of the eigenstates is
slightly different from the state |U+i (theoretical fidelity was
0.91) while the other eigenstate is always identical to the state
|U�i. The total duration of two cycles of the eight-pulse sequence
t = 1.5 ms has been adjusted to give t (k1 � k2) = p/2. The eigen-
values k1 and k2 have been calculated numerically by estimating
the evolution operator of the original eight-pulse sequence. In this
calculation, we used experimental values of chemical shifts, cou-
pling constant, and pulse durations. Change of sign of the dou-
ble-quantum average Hamiltonian, or reversed evolution, can be
achieved by shifting the phases of all pulses in the eight-pulse se-
quence by p/2. Elimination of the coherences was done by adding
the results from the forward and time-reversed evolutions after
the evolution time t = (p/2)(k1 � k2)�1, which produced the relative
phase p between the coherences. As a result, the coherences be-
tween two Bell states |U±i have been canceled out and the projec-
tion accomplished. In a more general case involving all four Bell
states, elimination of coherences can be done with an array of evo-
lution times, similar to used in Ref. [5] for averaging out the un-
wanted coherences.

In step D (Fig. 1(a)), a set of the NMR signals was acquired to
reconstruct the density matrix. The result of projective quantum
measurement can be extracted from NMR experiment in a simpler
way [29]. Here we present all elements of the density matrix to
verify the accuracy of the projection. Figs. 2 and 3 show the results
for the initial ground state |""i (without step B) and the Bell state
|U+i (with step B) before and after the projection. The recon-
structed density matrices are presented in both multiplicative
and Bell bases. As one can see in Fig. 2(a), the density matrix of
the ground state |""i has only one diagonal element in the multi-
plicative basis. At the same time, this state is a superposition of
two Bell states (Fig. 2(a0)). The result of projecting this state onto
the Bell basis is shown in Fig. 2(b) and (b0). Since the ground state
is a superposition of two Bell states: |""i = 2�1/2 (|U+i + |U�i), it is
expected that, after the projection, the system would end in the
mixed state 2�1 (|U+ihU+| + |U�ihU�|). The experiment confirms
that the system is in the desired mixed state presented in
Fig. 2(b0): the density matrix in the Bell basis has two diagonal
and no off-diagonal elements. Simultaneously, this state is a mix-
ture of the states |""i and |;;i, as one can see in Fig. 2(b).

If the state before projection is one of the Bell states, one
would expect that projection on the Bell states would leave
the state unchanged. The results of this test are shown in
Fig. 3. The experiment is exactly the same as described above,
except that the initial state is the Bell state |U+i. The density
matrix has only one diagonal element in the Bell basis
(Fig. 3(a0)) and has a superposition form in the multiplicative ba-
sis (Fig. 3(a)). The result of projection shown in Fig. 3(b) and (b0)
confirms that the state is preserved.

In conclusion, average Hamiltonians, resulting from averaging
fast-modulated internal interactions, can be designed to have de-
sired eigenstates. A state of a system can be projected on these
eigenstates of the average Hamiltonian. As an example, we have
demonstrated projection of a state of a two-spin system onto the
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Fig. 1. (a) NMR pulse sequence. (b) 13C NMR spectrum obtained with a 90� hard pulse. The polarization of 13C spins has been enhanced by cross-polarization. (c) 13C NMR
linear-response spectrum of the pseudopure state |""i. The vertical scale for this spectrum is increased by a factor 4.
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Fig. 2. Reconstructed density matrices for the initial ground state |""i before (a) and after (b) projection on Bell states.
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Fig. 3. Reconstructed density matrices for the initial Bell state |U+i before (a) and after (b) projection on Bell states.
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Bell states, which are not eigenstates of any naturally existing
Hamiltonian.
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Aspelmeyer, A. Zeilinger, An experimental test of non-local realism, Nature
446 (2007) 871–875.

[20] C.H. Bennett, S.J. Wiesner, Communication via one- and two-particle
operators on Einstein–Podolsky–Rosen states, Phys. Rev. Lett. 69 (1992)
2881–2884.

[21] C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters,
Teleporting an unknown quantum state via dual classical and Einstein–
Podolsky–Rosen channels, Phys. Rev. Lett. 70 (1993) 1895–1899.

[22] M. _Zukowski, A. Zeilinger, M.A. Horne, A.K. Ekert, ”Event-ready-detectors”
Bell experiment via entanglement swapping, Phys. Rev. Lett. 71 (1993)
4287–4290.

[23] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger,
Experimental quantum teleportation, Nature 390 (1997) 575–579.

[24] M.A. Nielsen, E. Knill, R. Laflamme, Complete quantum teleportation using
nuclear magnetic resonance, Nature 396 (1998) 52–55.

[25] Y.-H. Kim, S.P. Kulik, Y. Shih, Quantum teleportation of a polarization state
with a complete Bell state measurement, Phys. Rev. Lett. 86 (2001) 1370–
1373.

[26] M. Riebe, H. Häffner, C.F. Roos, W. Hänsel, J. Benhelm, G.P.T. Lancaster, T.W.
Körber, C. Becher, F. Schmidt-Kaler, D.F.V. James, R. Blatt, Deterministic
quantum teleportation with atoms, Nature 429 (2004) 734–737.

[27] M.D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W.M. Itano, J.D. Jost, E. Knill, C.
Langer, D. Leibfried, R. Ozeri, D.J. Wineland, Deterministic quantum
teleportation of atomic qubits, Nature 429 (2004) 737–739.

[28] N.K. Langford, T.J. Weinhold, R. Prevedel, A. Gilchrist, J.L. O’Brien, G.J. Pryde,
A.G. White, Demonstration of a simple entangling optical gate and its use in
Bell-state analysis, Phys. Rev. Lett. 95 (2005) 210504.

[29] J.-S. Lee, A.K. Khitrin, Projective measurement in nuclear magnetic resonance,
Appl. Phys. Lett. 89 (2006) 074105.

[30] J. Baum, M. Munovitz, A.N. Garroway, A. Pines, Multiple-quantum dynamics in
solid state NMR, J. Chem. Phys. 83 (1985) 2015–2025.

[31] J.-S. Lee, A.K. Khitrin, Thermodynamics of adiabatic cross polarization, J. Chem.
Phys. 128 (2008) 114504.

[32] G.M. Leskowitz, N. Ghaderi, R.A. Olsen, L.J. Mueller, Three-qubit nuclear
magnetic resonance quantum information processing with a single-crystal
solid, J. Chem. Phys. 119 (2003) 1643–1649.

[33] J.-S. Lee, The quantum state tomography on an NMR system, Phys. Lett. A 305
(2002) 349–353.


	Projection of a quantum state on eigenstates of average Hamiltonian
	Acknowledgment
	References


